
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

XML Gauge Programming for FS2004. Chapter 1. Main Body Sections V2.0

Version 2.0

By Nick Pike June, 2005

INDEX

1.0 <Gauge>……………………………………………………………….. Page 2
1.1 <Element> ……………………………………………………………... Page 2
1.2 <Select>, <Value> and <Case Value…………………………………. Page 3
1.3 <Shift> and <Nonlinearity>…………………………………………… Page 4
1.4 <Rotate> and <Axis>………………………………………………….. Page 6
1.5 Combining Shift and Rotate………………………………………….. Page 9
1.6 MaskImage…………………………………………………………… Page 10
1.7 <Visible>………………………………………………………………. Page 12
1.8 Stacking Element sections……………………………………………. Page 12
1.9 <Keys>……………………………………………………………….… Page 13
2.0 <Text> and <String>…………………………………………………... Page 13
2.1 Section Titles and Comments………………………………………… Page 15
2.2 Luminous and Bright…………………………………………………. Page 15
2.3 Gauge Cycle Time or Refresh Rate.………………………………..… Page 15
2.4 Size……………………………………………………...………….… Page 16
2.5 <Value> and more <String> instructions………………………...……. Page 16
2.6 <Mouse>………………………………………………………………. Page 16
2.7 Final discussion………………………………………………………. Page 17

XML is a text based programming language. Therefore, the code can be written in a
standard text editor. There are applications available specifically written for XML, but I
have always used an enhanced shareware version of Notepad. If code is saved with a txt
extension, rename with an xml extension. XML gauges usually consist of the xml file and
bmp (bitmap) files, although gauges without bitmaps are quite common.

This tutorial provides a general introduction to gauge main body sections and their
functions. If you read this tutorial first, it will give some good foundation information
Colours have been used to group relative information, or to allow the reader to easily
find references in code or text.

 1

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

1.0 <Gauge>

XML gauges follow a common theme of being broken down into sections, each with an
opening and closing instruction. A good example is that a gauge always starts with
<Gauge> and ends with </Gauge>. The closing instruction always has the character ‘/’.
This tells flightsim that the section has ended. A simple example of this:

<Gauge Name="f117 aileron trim" Version="1.0">
 <Image Name="bitmap1.bmp"/>
</Gauge>

This gauge would simply place the fixed, non-dynamic bitmap on the panel. Note that in
line 1, <Gauge> is actually expanded to include the gauge name (can be any name) and
the version.. Line 1 can always be the same but with maybe a different name for each
gauge. Bitmaps can be 8 or 16 bit (256 or millions of colours). Note that line 2 ends ‘/>’.
The ‘/’ tells flightsim there is no more bitmap information to follow. In certain
circumstances more information can follow to manipulate or control a bitmap, and the ‘/’
is omitted in this case, but more on this later. You do not have to give the bitmap sizes.
You do however in FS2002, but these tutorials are for FS2004 to keep this tutorial as
simple as possible. The bitmap can be of any size and proportion, both in the X and Y
axis. However, to optimise frame rates in FS2004, it is best to keep it as small as practical
and 8 bit. The bitmap name is the same as the bitmap file name (and can be any name),
including the bmp extension.

1.1 <Element>

If you want the gauge to produce dynamic effects, like a light switching on or off, or a
needle to move, or have FS2004 calculate variables or show text, you have to put the
instructions in an <Element> </Element> section. Note the ‘/’ again to close the section.
There is a multitude of ways to introduce instructions in this section type, but more of
that later. The following code is just an example of how the Element section works.

 <Element>
 <Image Name="bitmap2.bmp"/>
 </Element>

If this is introduced to our original code,

<Gauge Name="f117 aileron trim" Version="1.0">
 <Image Name="bitmap1.bmp"/>
 << Note that line gaps can be
 <Element> introduced to visually
 <Image Name="bitmap2.bmp"/> highlight separate sections.
 </Element>

</Gauge>

 2

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

The above gauge is not much use, but shows the principle. This gauge would place
bitmap2 over bitmap1, thus

Note: the drawn order is from last to first, that is, bitmaps
introduced later in the code show on top.

 Bitmap2
 This example shows bitmap2 that is smaller than bitmap1

 Bitmap1 Note: The 0,0 origin for a gauge bitmap is in the top left corner.
 The X axis increases its value from left to right.
 The Y axis increases its value from top to bottom.
Both bitmaps will anchor at 0,0, unless positional information is given, but more on that
later.

1.2 <Select>, <Value> and <Case Value.

Let’s take a look at this typical gauge section,

 <Element>
 <Select>
 <Value>(G:Var1)</Value><<Don’t worry about what (G:Var1) is for now.
 <Case Value="0">
 <Image Name="switch OFF.bmp"/>
 </Case>
 <Case Value="1">
 <Image Name="switch ON.bmp"/>
 </Case>
 </Select>
 </Element>

The <Select> </Select> section literally selects a bitmap. The <Value></Value> line is
used to generate or calculate a value which in this case generates a value of 0 or 1. Note
the <Case Value="x"> </Case> sections, that start and end a choice selection according
to the variable value. If the value of the variable (G:Var1) is 0, the <Case Value="0">
instruction is activated and the associated switch OFF.bmp will be shown on the panel,
and if 1, the <Case Value="1"> instruction is activated and the associated switch
ON.bmp is shown.. The bitmaps could be switch pictures, say a rocker switch that will
look like it’s in the off or on condition. They may also be lamp pictures, again looking
like they are off or illuminated.
We can introduce a positional instruction here, to position the selective bitmaps on the
gauge. In the very first example, item 1.1, the bitmap can be used as a background image,
and also a ‘canvas’ for the rest of the gauge. Note: It also sets the gauge size in pixels.

<Gauge Name="f117 aileron trim" Version="1.0">
 <Image Name="bitmap1.bmp"/>

 3

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

We can add,

 <Element>
 <Position X="42" Y="57"/> << Added
 <Select>
 etc.

The inclusion of the position instruction can position the selective bitmaps on the
background (canvas) bitmap.

 57 Note: All bitmap sizes are relative. That is, the selective bitmaps
 42 should be sized to look sensible against the background bitmap.

A bitmaps own size determines its size in the gauge.
There are no size instructions,

So the whole gauge would be,
<Gauge Name="f117 aileron trim" Version="1.0">
 <Image Name="bitmap1.bmp"/>
 <Element>
 <Position X="42" Y="57"/>
 <Select>
 <Value>(G:Var1)</Value>
 <Case Value="0">
 <Image Name="switch OFF.bmp"/>
 </Case>
 <Case Value="1">
 <Image Name="switch ON.bmp"/>
 </Case>
 </Select>
 </Element>
</Gauge>

1.3 <Shift> and <Nonlinearity>

The <Shift> section can move bitmaps over the background (canvas) bitmap in the X or
Y direction (linear movement).

The values used in this example look huge, but they are for a very long bitmap that
contains all the altitude numbers (commonly called the altitude tape), and has to move a
large distance in the Y direction. The low altitude numbers are at the bottom of the tape.

 4

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

 <Element>
 <Position X="399" Y="358"/>
 <Image Name="f117 pfd_ALTITUDE_number_strip.bmp">
 <Nonlinearity>
 <Item Value=" 0" X="0" Y="13644"/>
 <Item Value="80000" X="0" Y=" 45"/>
 </Nonlinearity>
 </Image>
 <Shift>
 <Value Minimum="-1000" Maximum="69000">(A:Indicated Altitude, feet)</Value>
 </Shift>
 </Element>

Here we see element, position and value again. We also introduce <Nonlinearity>
</Nonlinearity> and <Shift></Shift>. Nonlinearity and Shift work together. The value
line calculation produces a numerical value. This is enclosed by Shift, and so we can get
a bitmap to move by the value calculated. We need to tell FS2004 in which direction to
move and by how much. For the moment, ignore the position instruction line.
In line <Item Value=" 0" X="0" Y="13644"/> we are saying that when the Value is
0, the top left of the bitmap is 13644 pixels from (above) the top of the background
bitmap.
In line <Item Value="80000" X="0" Y=" 45"/> we are saying that when the Value is
80000, the top left of the bitmap is 45 pixels from (above) the top of the background
bitmap.
Therefore, you can see that the tape bitmap will move up and down.
The X in X=”0” in both lines shows that there is no movement in the X direction.

Without the position instruction line <Position X="399" Y="358"/>, both the left hand
edges of the background and the moving bitmap would align. In reality, we want the
moving bitmap to be positioned somewhere across the background bitmap (X axis). We
could do this by giving X in <Item Value=" 0" X="0" Y="13644"/> a value. In a
simple gauge, this would suffice. However, in more complex gauges, there is a better
way. The line <Position X="399" Y="358"/> says that the left hand edge of the tape
bitmap is 399 pixels away from the left hand edge of the background bitmap. The top of
the tape is using the top of the background bitmap as the datum at present. With the
introduction of Y=358, the datum for the tape is now 358 pixels down from the top of the
background bitmap. Therefore, in <Item Value="80000" X="0" Y=" 45"/> the top of
the tape is at 358-45 = 313.
Spotted anything? Ready for something totally confusing?
Y values in <Position X="399" Y="358"/> move down. In movement instructions like
<Item Value=" 0" X="0" Y=" 45"/>, Y movements move up. There are some
anomalies in XML programming, but not too many.

The <Value Minimum="-1000" Maximum="69000"> puts limits to the bitmap
movement. If the value line produces a value lower (more negative) than -1000, the
bitmap will not move any further. Again, the bitmap stops if the value is above 69000.

 5

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

This means that the values on the bitmap can start at -1000 and end at 69000. Without
these limits, the tape would move off the gauge, and so the limits act as mechanical stops.
There is a second way to produce shift. This is part of a PFD gauge (not that it matters).

<Shift>
<Value Minimum="-90" Maximum="90">(A:Attitude indicator pitch degrees, degrees) /-
/</Value>
<Scale Y="4"/>
</Shift>

Here we see a value line that generates a number in the range -90 to +90. Notice the
<Scale Y="4"/> instruction. Without this, the bitmap being controlled would move the
number of pixels being generated by the value line, from a datum position. This is fairly
restrictive, so to give total flexibility, the scale instruction is used. The Y character tells
the bitmap to move in the Y direction (up and down). This could be an X character and
produce sideways movement. The Y=”4” multiplies the value generated by 4. So if the
positive maximum of 90 is generated, the bitmap will move 4 x 90 = 360 pixels.

1.4 <Rotate> and <Axis>

 <Element>
 <Position X="80" Y="60"/>
 <Image Name="f117 pfd knob.bmp">
 <Axis X="20" Y="20"/>
 </Image>
 <Rotate>
 <Value>(G:Var1)</Value>
 <Nonlinearity>
 <Item Value="0" X="70" Y="50"/>
 <Item Value="1" X="90" Y="50"/>
 <Item Value="2" X="90" Y="70"/>
 <Item Value="3" X="70" Y="70"/>
 </Nonlinearity>
 </Rotate>
 </Element>

This is very similar to <Shift>, only this time the bitmap is rotated.
This example rotates a bitmap of a knob. Looking at the code,
 <Image Name="f117 pfd knob.bmp">
 <Axis X="20" Y="20"/>
 </Image>
If only <Image Name="f117 pfd knob.bmp"/> was given, the knob bitmap would rotate
about its top left hand corner. All rotating bitmaps will have X and Y dimensions, being
knobs, needles or whatever. We need to state the centre of rotation on the bitmap. The
knob bitmap is 40 x 40 pixels. We want it to rotate about its centre. The line
<Axis X="20" Y="20"/>

 6

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

moves the top left hand corner 20 pixels to the left (in this case, opposite to what you
might think) and 20 pixels up. Further coding will now rotate the knob about its centre.
Note now that the ‘/’ character is missing from the line
<Image Name="f117 pfd knob.bmp">
meaning that further control is expected. The instruction is finished by the code
</Image>.
Without a positional instruction, <Position X="80" Y="60"/>, the knob centre would now
coincide with the top left corner of the background (canvas) bitmap. In reality, I should
have explained the positional instruction first, and when you get used to this technique,
that is where you will start, and then apply the axis instruction. I wanted you to grasp the
reasoning of the pivot point first.
So, to position the knob, apply the positional instruction first. This sets where the knob
centre will end up.

 Then apply the axis information>>
 60 60
 80 80

We now have the knob in its correct location. The next thing to do is to get it to rotate.
We use <Nonlinearity> </Nonlinearity> again but this time to rotate. Note in this case,
<Nonlinearity> </Nonlinearity> is sandwiched by the Rotate instructions.
The code
 <Item Value="0" X="70" Y="50"/>
 <Item Value="1" X="90" Y="50"/>
 <Item Value="2" X="90" Y="70"/>
 <Item Value="3" X="70" Y="70"/>
works like this. The value line generates values between 0 and 3 in this case. This method
works similarly to shift, except both the X and Y values change. The X and Y co-
ordinates should lie on a circle. To find the X and Y positions, superimpose the knob
bitmap onto the background bitmap in a graphics editor. Move the cursor onto the top left
corner of the knob bitmap and read the X and Y position. This gives the X and Y values
in <Item Value="0" X="70" Y="50"/>
 Go to the remaining corners and do the same.

 The numbers inside the small rectangle are the <Value> numbers.
 70,50 90,50 As the <Value> numbers increase, the top left hand corner of the
 0 1 knob bitmap moves to each of the corner co-ordinates.
 3 2 In this case, these simple values allow the evaluation with mental
 70,70 90,70 arithmetic, but in reality, bitmaps are not usually sized with ‘easy
 to use numbers’

 7

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

The knob will not jump from one position to another but will turn smoothly. If the
<Value> number were to go above 3, or below 0, the knob would continue to rotate.
DO NOT do the following.

 <Item Value="0" X="70" Y="50"/>
 <Item Value="1" X="90" Y="50"/>
 <Item Value="2" X="90" Y="70"/>
 <Item Value="3" X="70" Y="70"/>
 <Item Value="4" X="70" Y="50"/> << this line has the same X,Y
co-ordinates as the Item Value="0” line. This will confuse things and the knob will jump
about trying to satisfy two similar conditions. Make sure the same co-ordinates are NOT
repeated.
We could add limits to the knob movement. The value line could read,
<Value Minimum="0" Maximum="4">(G:Var1)</Value>
This means the knob will be restricted to one complete revolution.

There is another way to get bitmaps to rotate. The above uses XY co-ordinates on the
background bitmap. A more mathematical way is to use radians. Radians are not difficult
to understand. We all know that a complete rotation in degrees is 360° (least, I hope we
do). The equivalent in radians is 2π (2 times pie). Pie has a value of 3.14159 to 5 decimal
places. Therefore, the value in radians for a complete rotation is 2x3.14159 = 6.28318.
Another plus is that computers understand radians better (faster) than degrees.

This is the existing example but using radians this time
 <Element>
 <Position X="80" Y="60"/>
 <Image Name="f117 pfd knob.bmp">
 <Axis X="20" Y="20"/>
 </Image>
 <Rotate>
 <Value>(G:Var1) 4 / 6.28318 *</Value>
 </Rotate>
 </Element>
Now (G:Var1) =0 is no rotation and (G:Var1) =4 is one full rotation. Do not worry about
the Value maths at this time. This is covered by another tutorial. However, for the
impatient, if we consider, say, half a rotation, (G:Var1) =2. This is divided by the full
rotation to give a ratio or fraction, 2/4= ½ times the full rotation in radians, so
½ x 6.28318 = 3.14159. With no other information on offer, FS2004 will take this
number as being radians (in a Rotate instruction). The Value could be supplied, for
example, with <Value>(A:Attitude indicator bank degrees, radians)</Value> where
FS2004 is told to use radians.
The advantage here is simplicity. You do not have to determine co-ordinates, and if you
understand radians, this method is more flexible.

 8

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

Yet another way to rotate a bitmap is to use degrees.

 <Rotate>
 <Value Minimum="-10" Maximum="10">(A:AILERON TRIM, degrees)
</Value>
 <Nonlinearity>
 <Item Value="-10" Degrees="-90"/>
 <Item Value=" 10" Degrees=" 90"/>
 </Nonlinearity>
 </Rotate>

When the value line generates zero, the bitmap will not turn. When -10 is generated, the
bitmap will rotate 90° anticlockwise, and +10, 90° clockwise.
In this case, the value line is calculating in degrees because of (A:AILERON TRIM,
degrees). You may think that because the bitmap is rotating by a number of degrees, the
value line has to calculate degrees. This is not actually the case. The bitmap will rotate
90° if the Item Value is 10. This can be 10 any units. So long as the value line calculates
10 (anything), the rotation is 90°.

1.5 Combining Shift and Rotate

As the title suggests, shift and rotate can be combined. A good example is the attitude
ladder in a PFD (primary flight display). The ladder is the stacked horizontal lines that
move up and down according to the aircraft pitch and rotate about the gauge centre
according to the banking angle. Note, the bitmaps shown are not to scale.

Ladder Ladder bitmap

 9

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

 <Element>
 <MaskImage Name="f117 pfd_attitude_card_mask.bmp"> <<
 <Axis X="260" Y="357"/> <<
 </MaskImage> <<Discussed in
 <Image Name="f117 pfd_attitude_card.bmp"> <<the next section
 <Axis X="152" Y="760"/> <<
 </Image> <<

 <Shift>

 <Value Minimum="-90" Maximum="90">(A:Attitude indicator pitch degrees,
degrees) /-/</Value>

 <Scale Y="4"/>
 </Shift>

 <Rotate>
 <Value>(A:Attitude indicator bank degrees, radians)</Value>
 </Rotate>

 </Element>

Looking at the Shift and Rotate instructions, they are both introduced to an Element
section. The bitmap will now move up and down and rotate as a combined movement.

1.6 MaskImage

This is a good time to introduce MaskImage, seeing how it was used in the above
example. In the above example, if,

<MaskImage Name="f117 pfd_attitude_card_mask.bmp">
 <Axis X="260" Y="357"/>
 </MaskImage>

was missing, you would see the ladder bitmap from the top to bottom in the gauge. As it
rotated you would see it from side to side. If you are familiar with a PFD gauge, you
know that the ladder shows in a windowed area within the gauge. What the Maskimage
instruction does is to provide an area where the associated bitmap (ladder, in this case) is
seen, and outside this area, it is not seen. The Maskimage is a bitmap with a near black
area, with colour depth 1,1,1. The part of the ladder that overlays the near black area will
show. The remainder of the Maskimage is pure black, being 0,0,0. Note: Any area of an
overlaid bitmap (the Maskimage is overlying the background bitmap) that is pure black
will be invisible.

So we need to consider 3 bitmaps.

 10

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

Background Maskimage Ladder
All the eye-candy, Invisible part is 0,0,0
Screw heads etc. Masked area is 1,1,1
1st in code, so placed Shown dark grey here.
At bottom

 0,0,0 1,1,1

To summarise, the Maskimage black area is invisible over the background, and the ladder
will only show in the 1,1,1 masked area.

Maskimages have a peculiar way of positioning themselves. In this example, the
Maskimage is the same size as the background bitmap. Lets say the Maskimage
instruction was only <MaskImage Name="f117 pfd_attitude_card_mask.bmp"/>
You would quite rightfully think that the top left hand corner of the background and the
Maskimage would align. Wrong. A Maskimage left to its own devices will align its top
left corner with the centre of the background. We need to introduce an axis instruction.
<Axis X="260" Y="357"/> moves the top left corner 260 pixels left and 357 up. I hope
you realise that the bitmap is 520 x 714. Now the Maskimage overlies the background.
Now look at the code from the gauge in section 1.5,

 <MaskImage Name="f117 pfd_attitude_card_mask.bmp">
 <Axis X="260" Y="357"/>
 </MaskImage>
 <Image Name="f117 pfd_attitude_card.bmp">
 <Axis X="152" Y="760"/>
 </Image>

The MaskImage overlays the background completely. But where is the ladder (f117
pfd_attitude_card.bmp). Another peculiar thing. The ladder is associated with the
MaskImage because they are in the same Element section. Left to its own devises, the top
left corner of the ladder would align with the MaskImage centre. The ladder is 304x1520,
therefore using <Axis X="152" Y="760"/> brings the centre of the ladder to the centre of
the MaskImage. The centres of all three bitmaps now align. Phew…..time for a lie down.

 11

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

The shift and rotate instructions now move the ladder up and down, and rotate, all about
the datum which is the centre of the gauge, and the ladder only shows on the 1,1,1 area..

1.7 <Visible>

This is a very useful feature of XML. You can tell FS2004 to show (or hide) something
according to a condition.
For example,

<!--rising runway-->
 <Element>
 <Position X="0" Y="0"/>
 <Visible>(A:Radio height, feet) 600 <</Visible>
 <MaskImage Name="f117 pfd_attitude_card_mask.bmp">
 <Axis X="260" Y="357"/>
 </MaskImage>
 <Image Name="f117 pfd_rising_runway.bmp" Luminous="Yes">
 <Axis X="58.5" Y="0"/>
 </Image>
 <Shift>
 <Value>(P:Units of measure, enum) 2 == if{ (A:Radio height, meters) } els{
(A:Radio height, feet) } 0 max </Value>
 <Scale Y="0.2"/>
 </Shift>
 </Element>

This <Visible> code controls the visibility of a rising runway, which can be seen in the
above view of the PFD in item 1.5. It is the red chevron bar. If the radio height is less
than 600 feet, the rising runway bitmap will show in the gauge. The <Visible> instruction
basically allows or disallows the operation of code in an <Element></Element> section.

1.8 Stacking Element sections

You can place element sections in other element sections. You can position several
element sections with one positional instruction, or make several element sections visible
with one visible instruction.

<Element> You may have two sections of a
 <Visible>(G:Var1)</Visible> gauge that you want to see according

<Element> to one condition. In this example, if
 Part of the gauge code here (G:Var1) satisfies a condition, the

</Element> two sections will show or be hidden.
<Element>

 Part of the gauge code here
</Element>

</Element>

 12

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

Also,

<Element> You may have two sections of a
 <Position X="122" Y="122"/> gauge that depend on the same

<Element> position instruction.
 Part of the gauge code here

</Element> .
<Element>

 Part of the gauge code here
</Element>

</Element>

Notice how a couple of element sections are sandwiched by a third element section. Note:
in a complete gauge you should have an equal number of <Element> and </Element>.

1.9 <Keys>

This is an interesting instruction. This method actually reads key strokes, or mouse clicks
on the monitor screen that has equivalent keystrokes.

<Keys>
<On Event="ATC_MENU_1">(A:COM1 active frequency, MHz) (>L:COM1STBY,
MHz)</On>
<On Event="ATC_MENU_2">(A:COM1 active frequency, MHz) (>L:COM1STBY,
MHz)</On>
<On Event="ATC_MENU_3">(A:COM1 active frequency, MHz) (>L:COM1STBY,
MHz)</On>
</Keys>

Don’t worry too much about what this is actually achieving. ATC_MENU_1 can be any
keystroke variable, and the achieved effect can be anything. In this case, if the ATC is
active and key 1 is pressed, the instruction afterwards will be activated. In this case I am
setting a variable to the COM1 active frequency. Why? Well, that needs to be the subject
of an example tutorial. I’ll put a list of keystroke variables on the site.

2.0 <Text> and <String>

So far we have looked at bitmaps as visual parts of the gauge. We can add lettering to the
gauge, for example, to show label text or show actual digital values.

 <Element>
 <Text X="110" Y="10" Bright="Yes" Length="11" Font="Arial" Color="white"
Adjust="Center" VerticalAdjust="Center">
 <String>1234567890X</String>
 </Text>
 </Element>

 13

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

<Text> and <String> are always used together.
The <Text> line describes the lettering. Working through the line, the horizontal space
allocated to the text is 110 pixels (X="110"). Be sure this is long enough to envelope the
text. Some experimentation needed. The text height is 10 pixels (Y="10"). So the ‘box’
for the text is 110x10. The Bright literally makes it bright. This could be Luminous (see
part 2.2 below). Length is the number of digits to be displayed. 1234567890X is 11 digits
(count them). Font is the font type. Bear in mind this needs to be loaded on the computer.
Arial is a good choice as it is a windows default. Color is white (there is a choice). I’ll put
a color list on the site. The color can also be given by hex values. For white, this would
be Color=”#FFFFFF”. Adjust=”Center” means the text will be horizontally centred in the
text ‘box’. VerticalAdjust="Center" centres the text in the vertical direction. There are
other instruction, best saved for example gauges.
Now FS2004 knows what the text should look like. We now need to tell Fs2004 what to
show. In this example, the text 1234567890X will show.

Another case. This line is in two parts. The variable and the print instruction. The
variable has extra brackets. The ‘%’ glues parts in the string line together.

<String>%((A:GPS WP NEXT ID, string))%!s!</String>

The variable (A:GPS WP NEXT ID, string) generates a string. That’s technical talk for a
group of letters. To show text in this case, we use !s!. The ID is four letters, so the
Length="11” becomes Length="4” in the <Text> line.

The above examples show ways of dealing with text. We can also show numbers.
The String line could look like this,

<String>%((A:Indicated Altitude, feet))%!05d!</String>

This line is again in two parts. The variable in brackets generates the indicated altitude in
feet. The !05d! part is display instructions. Again, an extra pair of brackets has been
added, and the two parts are cemented together using the ‘%’ character. Here, the 5
means that 5 digits will show, and the preceding 0 (zero) will fill any preceding digits
without a value with zeroes. The d means no decimals. If the height is 755 feet, you will
see 00755. Note, the preceding 0 cannot be used if a value can go negative; you can get
something like 00-5. If 5 digits are shown, the Length="11" becomes Length="5"

The !05d! could be changed for, say, !8.2f!. The .2f means there are two decimal places.

<String>%((A:Indicated Altitude, feet))%!8.2f!</String

This would produce, say, 755.47. There is no preceding 0, so any preceding value of zero
is not shown. The 8 means there will now be 8 digits, made up of the five possible figures
to the left of the decimal point, the decimal point itself, and the two figures to the right of
the decimal point. That’s 5+1+2=8 Don’t forget that the .2 (decimal 2) means shown to
two decimal points. The Length =”11” now becomes Length =”8”. Note, altitude is not

 14

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

normally shown using decimal places, this is just for the example. Again, example gauges
should be consulted for different ideas.

2.1 Section Titles and Comments

Text can be placed at the start of each section to remind you what it does.
Putting any text between <!-- and --> will not effect the gauges operation, thus

<!--Frequency window--> would entitle that section.

Also, if you are developing a gauge and you want to turn off a section during testing, or
you want to put in some text, maybe instructions, you can sandwich a section with
<Comment> in front and </Comment> at the end. Anything between these two
instructions will be ignored.

2.2 Luminous and Bright

The way a bitmap or text looks during dusk, night and dawn can be controlled with the
instructions Luminous and Bright. For example

<Image Name="f117 ailr trim bg.bmp" Luminous="Yes"/>
<Image Name="f117 ailr trim bg.bmp" Bright="Yes"/>

The Luminous instruction will cause the bitmap or text to glow according to the values,
Luminous=255,50,50 found usually at the end of the panel.cfg file, thus:

[Color]
Day=255,255,255
Night=100,80,80
Luminous=255,50,50

The Bright instruction quite literally gives a bright coloured level.
Without either instruction, the lighting level will be according to the Night levels.

2.3 Gauge Cycle Time or Refresh Rate

At the start of a lot of gauges, you will see lines like,

<Gauge Name="f117 radios" Version="1.0">
 <Image Name="f117 radio bg.bmp"/>
<Update Frequency="6"/>

The Update Frequency dictates how often the gauge will be run. Without this, the gauge
will refresh 18 times per second.

For example, <Update Frequency="1"/> means the gauge will be run once a second.

 15

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

<Update Frequency="2"/> means the gauge will be run once every half second.
<Update Frequency="3"/> means the gauge will be run once every third of a second.
<Update Frequency="4"/> Actually 4.5 times per second
<Update Frequency="5"/> or ="6"/> six times a second.
<Update Frequency="7"/>, ="8"/> or ="9"/> nine times a second.

There is not much point going to higher numbers than 6 or 7 as this would appear to have
little effect. By controlling the refresh rate, frames rates may be improved.
If a gauge does not need to run faster than once a second, then set the rate to 1.
Note: The total running time of each gauge cycle will depend on its complexity and
length, but they are completely run extremely quickly.

2.4 Size

Earlier you learned that a background bitmap sizes the gauge and acts as the ‘canvas’ for
placing other gauge objects. You can produce a gauge with no background bitmap. This
might be a gauge that shows digital speed on a black background.

Looking at the original code that starts the gauge,

<Gauge Name="f117 aileron trim" Version="1.0">
 <Image Name="bitmap1.bmp"/>

The image can be replaced with,

<Size X="100" Y="150"/>

This tells Fs2004 that the overall pixel dimensions of the gauge are 100 wide and 150
deep. Objects can be placed on the gauge using the positional instruction for each
<Element>, for example <Position X="50" Y="50"/> as discussed before.
There are ways of not having a background bitmap or size instruction and the gauge will
still work, but I believe it is good practise to use one of these methods.

2.5 <Value> and more <String> instructions

These deserves a separate tutorial because in most cases, these instructions depend on
calculation lines of code, and this can get quite involved.

2.6 <Mouse>

The sections discussed so far involve the main body of a gauge, and control the visual
output and calculations. Another part of the gauge is the user interaction, where control or
inputs are done with mouse clicks. A separate tutorial will deal with this.

 16

XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML
XMLXMLXML

2.7 Final discussion

Well, that’s all for now.. The best way to put the above into action is with some complete
examples. See further tutorials where complete gauges are shown and their inner
workings explained. There are still a few instruction code types for the main body to
learn about, but these are best covered by other tutorials or the examples. I hope I have
shown enough code here to help the beginner to understand the more straightforward
gauges.
Please bear in mind that in some cases, there are many ways of achieving the same effect.
With experience, you begin to build up a portfolio of XML knowledge in your head, and
the most optimised method will come to mind. However, I have found it impossible to
remember every twist and turn. I often refer to previous gauges I have made to act as a
foundation or template of a new gauge or to remind me what to do.
For those of you who have studied XML, you will know about the default GPS gauge.
This gauge introduces a completely new raft of instructions and variables, and requires its
own tutorial.
At first, this may all look a bit daunting. I actually became reasonably adept with XML
after about 6 months. OK, not a five minute job, but then it takes time to learn anything
properly. I also had a very good teacher, a man by the name of Arne Bartels. I have also
learned useful snippets by regularly visiting the forums at Avsim.com..

Copyright, N E J Pike/ FS2x.com. All rights reserved.

Credits for additional information,

Rob Barendregt

 17

